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Abstract

Consider a vertical plate with a leading edge. The temperature of the plate is above the spontaneous nucleation

temperature, so that vapor completely covers the plate. Two-dimensional quasi-parallel theory is used to examine the

stability of the two-phase system. Numerical calculations show that the main parameter determining the thickness of

the vapor film and its stability is the difference between the temperature of the heated vertical plate and the saturation

temperature of the liquid. As the thickness of the vapor film is made smaller, the nose of the neutral curve approaches

that of the corresponding one-phase liquid. The overall temperature difference between the plate and liquid bulk does

not strongly influence stability properties.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Film boiling of a volatile liquid from a hot solid

surface occurs when the surface temperature is above a

critical temperature, known as the minimum film-boiling

temperature (MFBT). Above this point contacts be-

tween the liquid and solid are only momentary. At solid

surface temperatures below this point a rapid tran-

sition can occur to nucleate boiling, with production

of numerous vapor bubbles. Under vigorous surface

boundary-layer agitation, the average heat transfer co-

efficient increases strongly, and quenching of the hot

surface takes place, as in metal heat treating. The reverse

process, in which nucleate boiling rapidly transits to film

boiling, occurs at a critical heat flux, which constitutes a

practical operating limit for boilers and nuclear reactors.

Because of the obvious safety implications, these tran-

sitions have been widely studied. Nucleate boiling is a

highly chaotic process, dependent on the irregular dis-

position and nature of nucleation sites. Hence an ac-

ceptable theory, devoid of empirical data, has not been

achieved. The reverse process of film boiling–nucleate

boiling transition is more tractable, since close to

MFBT, the vapor layer is usually laminar and smooth.

Hydrodynamic stability (Rayleigh–Taylor) models [1]

have therefore been formulated for horizontal surfaces,

but often have been applied to situations where the

theory should not hold, as in boiling on vertical walls,

cylinders and spheres. With the application of empirical

correction factors, however, reasonably good prediction

tools have been obtained.

At high liquid subcoolings, the vapor layer tends to

be quite thin, and will quickly break up unless the solid

surface temperature is quite high. These circumstances

lead to very large heat transfer rates, which are highly

desirable for some applications. Another form of insta-

bility, known as heterogeneous spontaneous nucleation,

then may become important. This refers to vapor-free

heterogeneous nucleation, called by Fauske spontaneous

nucleation [2,3], and studied experimentally by Waldram

et al. [4]. Its counterpart, homogeneous nucleation, re-

fers to spontaneous formation of critical-size vapor

embryos through random thermal motion (Brownian

motion) of the liquid molecules in the absence of a

second phase. However, as pointed out by Skripov [5],
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the critical temperature may be substantially reduced if a

second (unwetted) phase is present. An explosive local

transition can then take place close to a heated wall. The

subject has been thoroughly studied by Sakurai, Shiotsu

and associates (see [6] and references therein) in a series

of papers, covering a range of system pressures, liquids,

solids, liquid temperature and flow. Heterogeneous

spontaneous nucleation heat transfer is still not well

understood, and requires empirical data as input, par-

ticularly in view of its highly turbulent nature.

Hydrodynamic stability theory can be quite useful in

analyzing the transitions in film boiling on a heated

vertical plate with a leading edge at which a boundary

layer begins, develops with distance, and at some point

undergoes a transition to turbulence. It is the object of

the laminar analysis to determine the position at which

there is a transition to a higher heat transfer occurs; this

is the instability point, which here will be studied for

two-dimensional quasi-parallel disturbances. The insta-

bility point translates into a position above the leading

edge where disturbances begin to grow.

Unfortunately, there seem to be no data with which

to compare our predictions. This work can therefore

serve as a guide for such experiments.

2. Formulation of the model

Consider a semi-infinite vertical plate with a leading

edge at x ¼ 0 as shown in Fig. 1. The plate is heated to
uniform temperature T0 above the saturation tempera-
ture Ts of the adjacent liquid which at large distances
from the plate is cooled to temperature T1, T1 < Ts. As
a result of heating, and for T0 large enough, a vapor film
is formed, separating the plate from the remaining liquid

as shown.

The fluids are governed by the Boussinesq equations

in each phase

q0
ov

ot

�
þ v � rv

�
¼ �rp� þ lr2vþ q0agðT � TLÞex;

ð1Þ

Nomenclature

A relative superheat, A ¼ ðT0 � TsÞ=DT
a scaled wave number of perturbation

d length scale

E evaporation number, E ¼ klDT=mlq0lL
G scaled gravity, G ¼ gd3=m2l
g acceleration of gravity

Gr Grashof number

h position of the interface

I unit tensor of the second rank

J mass flux

k thermal conductivity

L latent heat of vaporization

n unit vector normal to the interface

p pressure

Pr Prandtl number

Re Reynolds number

S surface tension

T temperature

T1 liquid temperature far from the wall

TL liquid temperature at finite very large dis-

tance from the wall

Ts saturation temperature

T0 wall temperature

DT overall temperature difference

t time

t unit vector tangential to the interface

u velocity component parallel to the wall

V velocity scale, V ¼ galDT=mld2

w velocity component normal to the wall

x coordinate measuring distance along the wall

z coordinate measuring distance normal to

the wall

Greek symbols

a thermal expansion coefficient

� small amplitude of linear perturbation,

� ¼ w=u
j thermal diffusivity

l dynamic viscosity

m kinematic viscosity

q0 density

r surface tension

W stream function

x scaled frequency of perturbation

r two-dimensional differentiation operator,

r ¼ fo=ox; o=ozg

Subscripts

c critical value

d dimensional value

i interface

l liquid

v vapor

x derivative with respect to x

z derivative with respect to z

0 basic flow

1 perturbation
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r � v ¼ 0; ð2Þ

oT
ot

þ v � rT ¼ jr2T ; ð3Þ

where the radiation heating is ignored. Subscripts v and

l will label variables in the two phases. Here v ¼ fu;wg
is the velocity, p� is the reduced pressure, T is the tem-
perature, q0, l, j and a are the density, viscosity, ther-
mal diffusivity, and thermal expansion coefficient of the

fluid, respectively, ex ¼ f1; 0g and g is the magnitude of
the acceleration of gravity.

On the solid plate at z ¼ 0, xP 0

Tv ¼ T0; ð4Þ

and

vv ¼ 0: ð5Þ

Far from the plate at z ¼ l�

Tl ¼ TL ð6Þ

and a non-zero velocity is allowed in order to mimic the

infinite domain case.

vl ¼ vL ¼ const: ð7Þ

According to Burelbach et al. [9] on the interface

z ¼ hðx; tÞ, the mass flux J through the interface from the
liquid is given by

J ¼ q0lðvl � viÞ � n; ð8Þ

which equals the flux from the vapor side

J ¼ q0vðvv � viÞ � n; ð9Þ

where vi is the interface velocity and n is the unit normal

vector pointing out of the vapor. The normal-stress

condition is

Jðvv � vlÞ � n� ðTv � TlÞ � n � nþ rr � n ¼ 0; ð10Þ

where r is the constant surface tension and the stress
tensor is given by

T ¼ �pIþ 2lD; D ¼ 1
2
½rvþ ðrvÞT
; ð11Þ

where p is the pressure, I is unit tensor. The shear-stress

condition reads

Jðvv � vlÞ � t� ðTv � TlÞ � n � t ¼ 0: ð12Þ

There is the no-slip condition

vv � t ¼ vl � t; ð13Þ

where t is the unit tangential vector,

n ¼ f�hx; 1g=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2x

q
; t ¼ f1; hxg=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2x

q
: ð14Þ

The energy balance at the interface takes the form:

JfLþ 1=2 ðvv½ � viÞ � n
2 � 1=2 ðvl½ � viÞ � n
2g
þ klrTl � n� kvrTv � nþ 2llðDl � nÞ � ðvl � viÞ
� 2lvðDv � nÞ � ðvv�viÞ ¼ 0; ð15Þ

where L is the latent heat of vaporization, and k denotes

the thermal conductivity. Finally, one needs a relation

that defines the interface temperature Ti; here, we shall
assume local thermodynamic equilibrium, which gives

that

Ti ¼ Ts: ð16Þ

3. Scalings

Simplification of the system (1)–(16) will be sought

appropriate for the situation where all the heat arriving

at the interface is available for phase change. Let d and

V be scalings for the length and the velocity, both of

which will be defined shortly. Define the superheat DT
across the layer:

DT ¼ T0 � TL; ð17Þ

and the non-dimensional temperature bTT as
bTT ¼ T � TL

DT
; ð18Þ

so that at the heated platebTTv ¼ 1 at ẑz ¼ 0 ð19Þ

and far from the plate

bTT l ¼ 0 at ẑz ¼ l � l�=d:

Fig. 1. Sketch of the model system.
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The bulk equations (1)–(3) are scaled as

ov̂vl

ot
þ v̂vl � rv̂vl ¼ �rp̂pl þ

1

Re
r2v̂vl þ

Gr
Re2

bTTlex; ð20Þ

ov̂vv

ot
þ v̂vv � rv̂vv ¼ � 1

q
rp̂pv þ

m
Re

r2v̂vv þ a
Gr
Re2

bTTvex; ð21Þ

obTT l
ot

þ v̂vl � rbTTl ¼ 1

PrlRe
r2bTTl; ð22Þ

obTTv
ot

þ v̂vv � rbTTv ¼ m
PrvRe

r2bTTv; ð23Þ

where Pr ¼ m=j denotes the Prandtl number, distinct for
the vapor and liquid phase. At the interface at ẑz ¼
ĥhðx̂x; t̂tÞ, there are the mass-flux balances (8) and (9):

EbJJ
Re

¼ ðv̂vl � v̂viÞ � n;

EbJJ
Re

¼ qðv̂vv � v̂viÞ � n; ð24Þ

the normal-stress condition:

E2bJJ 2
Re2

ð1� q�1Þ þ p̂pl � p̂pv �
2

Re
ðbDDl � lbDDvÞ � n � n

¼ � S
Re2

r � n; ð25Þ

the shear-stress condition:

ðbDDl � lbDDvÞ � n � t ¼ 0; ð26Þ

and the simplified energy balance under condition that

l � 1bJJ þ ðrbTTl � krbTTvÞ � n ¼ 0: ð27Þ

Here the kinetic energy and heat generation terms have

been dropped in favor of the latent-heat release. There is

the no-slip condition

ðv̂vl � v̂vvÞ � t ¼ 0 ð28Þ

and the scaled version of the temperature difference

across the vapor layer,

A ¼ T0 � Ts
DT

;

which determines the vapor-layer thickness. Other pa-

rameters are ratios of the material constants

q ¼ q0v
q0l

; l ¼ lv
ll

; m ¼ l
q
; j ¼ jv

jl
;

a ¼ av
al
; k ¼ kv

kl
;

the surface tension

S ¼ dq0lr0=l
2
l ;

the evaporation number

E ¼ klDT=mlq0lL;

gravity

G ¼ gd3=m2l ;

the Reynolds number

Re ¼ dV =ml;

and the Grashof number

Gr ¼ galDTd3=m2l :

On the one hand one may note that the evaporation

number E, which is applicable to problems describing

two different phases, and the Grashof number Gr which

is usually used in single-phase problems, both depend on

the temperature difference DT . We shall select one of
them to represent the influence of the controllable pa-

rameter DT .
On the other hand there is a relation between Gr and

Re which determines the relative magnitudes of terms in

the rescaled Navier–Stokes equations (20) and (21). As

soon as this relation is established we have only one

parameter controlling the problem. We use the typical

velocity scaling for the stability of one-phase flows (see

[7,8] and references therein)

V ¼ galDT
ml

d2; ð29Þ

corresponding to Gr ¼ Re. The length scale d remains
arbitrary, but the neutral stability results are indepen-

dent of it, as it shown below in Section 6. In what fol-

lows we drop carats in the scaled variables.

4. Basic-flow equations

The basic states corresponds to steady flow with a

vapor layer and a boundary layer in the region origi-

nating at the leading edge and thickening upward. Since

the buoyancy is the main driving force in the problem,

the buoyancy term in Eqs. (20) and (21) must be re-

tained.

The set of steady basic-flow equation reads

vl � rvl ¼
1

Re
r2vl þ

1

Re
Tlex; ð30Þ

vl � rTl ¼
1

PrlRe
r2Tl; ð31Þ

vv � rvv ¼
m
Re

r2vv þ
a
Re

Tvex; ð32Þ

vv � rTv ¼
m

PrvRe
r2Tv; ð33Þ
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where we assume that the pressure gradient is negligible.

The first two equations in component form are as fol-

lows:

ululx þ wlulz ¼
1

Re
ðulxx þ ulzzÞ þ

1

Re
Tl; ð34Þ

ulwlx þ wlwlz ¼
1

Re
ðwlxx þ wlzzÞ; ð35Þ

ulTlx þ wlTlz ¼
1

PrlRe
ðTlxx þ TlzzÞ: ð36Þ

The usual boundary-layer approximation consists of

introducing different scales for x and z derivatives, as

well as for u and w, such as,

o=ox � 1; o=oz � ��1; u � 1; w � �:

The left hand side (l.h.s.) of the Eq. (34) should be of

unit order, and so the leading term in the Laplacian,

ulzz=Re, and the buoyancy term should be of the same
order. This implies that Re � ��2 and T � ��2. Then the
l.h.s. of the temperature Eq. (36) is of order of ��2, as is
the leading term, Tlzz=ðPrlReÞ, in the r.h.s. Consider now
the second Eq. (35); its l.h.s. is of order � as is wlzz=Re in
r.h.s. So the original basic-flow equations reduce to the

following set, in which Re and T are rescaled by ��2.
Similar considerations are applied to the vapor-phase

equations to produce the following:

ululx þ wlulz ¼
1

Re
ulzz þ

1

Re
Tl; ð37Þ

ulTlx þ wlTlz ¼
1

PrlRe
Tlzz; ð38Þ

uvuvx þ wvuvz ¼
m
Re

uvzz þ
a
Re

Tv; ð39Þ

uvTvx þ wvTvz ¼
m

PrvRe
Tvzz: ð40Þ

Since the stationary interface will have small slope,

the surface tension is taken to be negligible, and so the

approximate boundary conditions become

EJ
Re

¼ �ulhx þ wl; ð41Þ

EJ
Re

¼ qð�uvhx þ wvÞ; ð42Þ

ulz ¼ luvz; ð43Þ

ul ¼ uv; ð44Þ

J þ Tlz � kTvz ¼ 0: ð45Þ

It should be noted here that if we want to retain mass

flux J in (41) and (42) we are required to have J � �.
Thus, the mass flux in (45) is negligible compared the

other terms and must be omitted. We seek a similarity

solution (for zero surface tension). Stream functions

Wðx; zÞ are introduced through the relations:

u ¼ Wz; w ¼ �Wx;

as well as two sets of similarity functions

Wlðx; zÞ ¼
x
Re

� �3=4
flðgÞ;

Wvðx; zÞ ¼ m
x
Re

� �3=4
fvðgÞ;

Tlðx; zÞ ¼ glðgÞ; Tvðx; zÞ ¼ gvðgÞ;

with similarity variable

g ¼ Re1=4zx�1=4:

The equations determining the stream functions and

temperature profiles read

f 000
l þ 3

4
f 00
l fl � 1

2
f 02
l þ gl ¼ 0; ð46Þ

g00l þ 3
4
Prlflg0l ¼ 0; ð47Þ

f 000
v þ 3

4
f 00
v fv � 1

2
f 02
v þ a

m2
gv ¼ 0; ð48Þ

g00v þ 3
4
Prvfvg0v ¼ 0: ð49Þ

The boundary conditions are

fvð0Þ ¼ f 0
vð0Þ ¼ 0; gvð0Þ ¼ 1; ð50Þ

f 0
l ð1Þ ¼ 0; glð1Þ ¼ 0; ð51Þ

glð�ggÞ ¼ gvð�ggÞ ¼ 1� A; g0lð�ggÞ ¼ jg0vð�ggÞ; ð52Þ

flð�ggÞ ¼ lfvð�ggÞ; f 0
l ð�ggÞ ¼ mf 0

vð�ggÞ; ð53Þ

f 00
l ð�ggÞ ¼ lmf 00

v ð�ggÞ: ð54Þ

5. Basic-flow solution

Consider water and ethanol as typical liquids for the

numerical calculations. Their material properties are

presented in Table 1.

It is instructive first to calculate the one-phase basic

state, which corresponds to solution of Eqs. (46) and

(47) with the boundary conditions (50) and (51) with

subscripts dropped. We find the basic-flow solutions for

air (Pr ¼ 0:73), ethanol (Pr ¼ 5:68), and water (Pr ¼
1:76); the temperature and velocity profiles for water are
shown in Fig. 2(a). Notice that the velocity profiles are

inflectional, and the temperature profiles possess hori-

zontal gradients, both suggestive of possible instabilities.

These results agree with the calculations performed in

[7]. The basic-flow profiles for ethanol do not differ

qualitatively from these and are not shown here.

The basic-flow solution for the two-phase model is

found as the solution of system (46)–(54); the quantities

to be determined are f 00
v ð0Þ and g0vð0Þ. The conditions

(51) far from the solid wall are satisfied by minimizing a

value of f 02
l ðlÞ þ f 002

l ðlÞ þ g2l ðlÞ for l � 1.
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The basic solutions for water and steam are presented

in Fig. 2(b)–(d) for different values of the relative su-

perheat A. Again, the velocity profiles are inflectional,

and the temperature profiles possess horizontal gradi-

ents. This means that we may expect the two types of

instabilities which were detected for one-phase problem

in [7]. We see that the parameter A controls the relative

width of the vapor film on the wall, with smaller A

corresponding to the thinner vapor film.

6. Linear stability problem

In deriving the linear disturbance equations we as-

sume that the flow is quasi-parallel, so that all x deriv-

Fig. 2. The profiles of temperature T (left) and tangential velocity component u (right) as similarity solutions of basic-state problem for

water (a) the one-phase problem, and the two-phase problem for (b) A ¼ 0:2, (c) A ¼ 0:5, (d) A ¼ 0:8. The insets show enlarged profiles
in the vapor–liquid interface region.

Table 1

Thermophysical material properties of liquids at 1 atm

Water Ethanol

Ts (K) 373 352

q0l (g/m
3) 9.6� 105 7.9� 105

q0v (g/m
3) 6.0� 102 1.6� 103

ml (m2/s) 3.0� 10�7 5.0� 10�7
mv (m2/s) 2.1� 10�5 6.2� 10�5
kl (J/m s �C) 6.8� 10�1 1.7� 10�1
kv (J/m s �C) 2.4� 10�2 1.7� 10�2
jl (m2/s) 1.7� 10�7 8.8� 10�8
jv (m2/s) 2.0� 10�5 7.0� 10�6
al (1/�C) 6.0� 10�4 8.6� 10�4
av (1/�C) 6.0� 10�3 3.6� 10�3
L (J/g) 2.3� 103 8.8� 102
r0 (N/m �C) 5.9� 10�4 2.0� 10�4
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atives of the basic-flow quantities are set to zero. In this

case all first-order disturbances Q1 can be written in the
form

Q1ðx; z; tÞ ¼ Q1ðzÞeiðâax�x̂xtÞ:

In the liquid

u1lt þ w1lu0lz þ u0lu1lx ¼ �p1lx þ
1

Re
ðu1lxx þ u1lzzÞ þ

1

Re
T1l;

ð55Þ

w1lt þ u0lw1lx ¼ �p1lz þ
1

Re
ðw1lxx þ w1lzzÞ; ð56Þ

T1lt þ w1lT0lz þ u0lT1lx ¼
1

PrlRe
ðT1lxx þ T1lzzÞ: ð57Þ

Similar equations could be written for the vapor

phase. In terms of the normal modes we have

�ix̂xDW1l � iâaW1lW0lzz þ iâaW0lzDW1l

¼ �iâap1l þ
1

Re
ðD2 � âa2ÞDW1l þ

1

Re
T1l; ð58Þ

�x̂xâaW1l þ âa2W0lzW1l ¼ �Dp1l � iâa
1

Re
ðD2 � âa2ÞW1l;

ð59Þ

�ix̂xT1l � iâaW1lT0lz þ iâaW0lzT1lx ¼
1

PrlRe
ðD2 � âa2ÞT1l;

ð60Þ
where D ¼ d=dz. One can eliminate the pressure per-
turbation p1l from Eqs. (58) and (29), and obtain

1

Re
ðD2 � âa2Þ2W1l � iâa W0lz

 
� x̂x

âa

!
ðD2 � âa2ÞW1l

þ iâaW0lzzzW1l þ
1

Re
DT1l ¼ 0:

The final set of linear equations reads as follows:

1

Re
ðD2 � âa2Þ2W1l � iâa W0lz

 
� x̂x

âa

!
ðD2 � âa2ÞW1l

þ iâaW0lzzzW1l þ
1

Re
DT1l ¼ 0; ð61Þ

m
Re

ðD2 � âa2Þ2W1v � iâa W0vz

 
� x̂x

âa

!
ðD2 � âa2ÞW1v

þ iâaW0vzzzW1vþ
1

Re
aDT1v ¼ 0; ð62Þ

1

PrlRe
ðD2 � âa2ÞT1l � iâa W0lz

 
� x̂x

âa

!
T1l þ iâaT0lzW1l ¼ 0;

ð63Þ

m
PrvRe

ðD2 � âa2ÞT1v � iâa W0vz

 
� x̂x

âa

!
T1v þ iâaT0vzW1v ¼ 0:

ð64Þ

Let us introduce a new parameter xR

xR ¼ x0
Re

� �1=4
;

where x0 denotes the scaled distance from the lead-

ing edge along the vertical wall. The basic-flow stream

functions, W0l and W0v, may be expressed through the

basic-flow functions, f0lðgÞ and f0vðgÞ, as follows:

W0lðzÞ ¼ x3Rf0lðgÞ; W0vðzÞ ¼ mx3Rf0vðgÞ:

The corresponding quantities for the first-order stream

functions are:

W1lðzÞ ¼ x3Rf1lðgÞ; W1vðzÞ ¼ mx3Rf1vðgÞ:

The operator Dg (derivative in g) is expressed as

Dg ¼ xRD:

We also introduce new wave number and frequency

(depending on the position x0) as follows:

a ¼ xRâa; x ¼ x̂x
xR

:

Using these quantities we may rewrite the Eqs. (61)

and (63):

1

R
ðD2g � a2Þ2f1l � ia f 0

0l

�
� x

a

�
ðD2g � a2Þf1l

þ iaf 000
0l f1l þ

1

R
g01l ¼ 0; ð65Þ

1

PrlR
ðD2g � a2Þg1l � ia f 0

0l

�
� x

a

�
g1l þ iag00lf1l ¼ 0; ð66Þ

where we set T0lðzÞ ¼ g0lðgÞ, T1lðzÞ ¼ g1lðgÞ, and define a
new parameter R

R ¼ Rex3R:

R is given by

R ¼ Gr1=4x3=40 ¼ galDTx30d
m2l

� �1=4
;

which depends both on the dimensional position x0d
along the wall, and the temperature difference (or evap-

oration number E). The dimensional wavenumber is then

ad ¼
galDT
m2l x0d

� �1=4
a:

The corresponding equations in the vapor are

1

R
ðD2g � a2Þ2f1v � ia f 0

0v

�
� x

ma

�
ðD2g � a2Þf1v

þ iaf 000
0vf1vþ

a
m2R

g01v ¼ 0; ð67Þ

1

PrvR
ðD2g � a2Þg1v � ia f 0

0v

�
� x

ma

�
g1v þ iag00vf1v ¼ 0:

ð68Þ
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The set of the interface boundary conditions is

T1l þ h1T0lz ¼ 0; ð69Þ

T1v þ h1T0vz ¼ 0; ð70Þ

E
Re

J1 þ ih1âa W0lz

 
� x̂x

âa

!
þ iâaW1l ¼ 0; ð71Þ

q�1 E
Re

J1 þ ih1âa W0vz

 
� x̂x

âa

!
þ iâaW1v ¼ 0; ð72Þ

DðW1l � W1vÞ þ h1 W0lzzð � W0vzzÞ ¼ 0; ð73Þ

ðD2 þ âa2ÞðW1l � lW1vÞ þ h1ðW0lzzz � lW0vzzzÞ ¼ 0; ð74Þ

p1l � p1v þ
2E2J0J1
Re2

ð1� q�1Þ � 2iâa
Re
DðW1l � lW1vÞ

� 2iâa
Re

h1ðW0lzz � lW0vzzÞ ¼ � S
Re2

âa2h1; ð75Þ

DðT1l � kT1vÞ þ h1ðT0lzz � kT0vzzÞ þ J1 ¼ 0: ð76Þ

Let us rewrite these conditions using similarity vari-

able with the interface perturbation and the mass flux

rescaled by h1 ¼ H1xR, J1 ¼ �JJ1=xR:

g1l þ H1g00l ¼ 0; ð77Þ

g1v þ H1g00v ¼ 0; ð78Þ

E
R

�JJ1 þ iH1a f 0
0l

�
� x

a

�
þ iaf1l ¼ 0; ð79Þ

l�1 E
R

�JJ1 þ iH1a f 0
0v

�
� x

ma

�
þ iaf1v ¼ 0; ð80Þ

ðf 0
1l þ H1f 00

0lÞ � mðf 0
1v þ H1f 00

0vÞ ¼ 0; ð81Þ

ðD2g þ a2Þðf1l � lmf1vÞ þ H1D
3
gðf0l � lmf0vÞ ¼ 0; ð82Þ

P1l � P1v þ
2E2�JJ0�JJ1

R
ð1� q�1Þ � 2iaðf 0

1l � lmf 0
1vÞ

� 2iaH1ðf 00
0l � lmf 00

0vÞ ¼ � S
R
a2H1; ð83Þ

ðg01l � kg01vÞ þ H1ðg000l � kg000vÞ þ �JJ1 ¼ 0 ð84Þ

and where rescaled pressure perturbations are used

p1l ¼ xRRe�1P1l; p1v ¼ xRRe�1P1v. The rescaled basic-flow
mass flux �JJ0 ¼ J0xR is determined as

�JJ0 ¼ � 3E
4R

f0lð�ggÞ ¼ � 3E
4Rl

f0vð�ggÞ:

Rescaled equation (58) and a similar one for the vapor

phase could be used for determination of pressure per-

turbations.

� ia x
a
f 0
1l

�
þ f 00

0lf1l � f 0
0lf

0
1l

�
¼ 1

R
ð�iaP1l þ ðD2g � a2ÞDgf1l þ g1lÞ;

� ia x
ma

f 0
1v

�
þ f 00

0vf1v � f 0
0vf

0
1v

�
¼ 1

R

�
� ia

lm
P1v þ ðD2g � a2ÞDgf1v þ

a
m2
g1v

�
:

One can now determine the stability properties of the

basic state for quasi-parallel, two-dimensional distur-

bances.

7. Numerical results and discussion

7.1. Numerical procedure

The linear stability problem is solved as a spatial-

growth problem, i.e. the wave number a is assumed to be

complex, a ¼ aR þ iaI with real time frequency x of the
perturbation. For fixed parameters of the problem and

selected x we determine the complex eigenvalue of the
wave number a; the positive aI corresponds to decay of
disturbances, while negative aI means that the distur-
bance grows in the direction of the flow along the wall.

Hence, the neutral curve is given by the condition aI ¼ 0.
Satisfaction of the boundary conditions for the liquid

phase requiring that all first-order quantities vanish ex-

ponentially far from the wall is attained using the

method discussed in [7]. The results of calculations are

checked against that of a standard temporal-stability

analysis with complex x and real a using the Gaster

theorem [10]. Once the most unstable branch is detected

we use a continuation technique in order to follow this

branch. The eigenvalue problem in three-dimensional

complex space is solved by the gradient method using

the hybrid symbolic-numeric code written in Mathem-

atica computer algebra language.

7.2. Neutral curves for one-phase problem

The linear-stability calculations are performed for the

one-phase problem for air, water and ethanol, and the

resulting neutral curves are shown in Fig. 3. In case of

air both shear and thermal instabilities are found rep-

resented by lower and upper lobes of the curve, respec-

tively. For water and ethanol only one lobe is found,

indicating that both instabilities overlap in these cases.

These results are in good agreement with those of

Nachtsheim [7]. The positions of critical points of the

neutral curves are Rc ¼ 16:9; ac ¼ 0:154 for water, Rc ¼
22:2, ac ¼ 0:122 for air, and Rc ¼ 12:1, ac ¼ 0:246 for
ethanol.
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7.3. Neutral curves for the two-phase problem for water

(with surface tension set to zero)

The dependence of the neutral curve profile is de-

termined on two dimensionless temperature parameters,

the overall temperature difference (or evaporation num-

ber E) and the relative superheat A which controls the

thickness of the vapor film. In the range 0:016E6 10:0
no significant influence is found of this parameter on

the neutral curve (when it is depicted in {R; a} plane).
In Fig. 4 the neutral curves are presented for water

with its vapor at different values of overall superheat

given by the evaporation number E and fixed relative

superheat A ¼ 0:2.
The relative superheat A strongly affects the upper

branch of the neutral curve and has very weak influences

on the lower branch and the most dangerous value Rc,

as shown in Fig. 5 (A ¼ 0:2 : Rc ¼ 20:0, ac ¼ 0:145,
A ¼ 0:5 : Rc ¼ 24:2, ac ¼ 0:108, A ¼ 0:8 : Rc ¼ 23:1,

ac ¼ 0:072). The location of the upper branch of the
neutral curve is not monotonic with the increase of A,

though, as shown in Fig. 5 the one-phase Rc and ac are
approached as A ! 0.

7.4. Neutral curves for the two-phase problem for ethanol

(with surface tension set to zero)

Results of the linear stability analysis for ethanol

show that in this case there is a noticeable influence of

the evaporation number on the critical value of Rey-

nolds number Rc, while the most dangerous wave

number is not affected, as shown in Fig. 6 (E ¼ 0:01 :
Rc ¼ 16:90, ac ¼ 0:125, E ¼ 0:1 : Rc ¼ 18:29, ac ¼
0:122, E ¼ 1:0 : Rc ¼ 18:44, ac ¼ 0:121).
Fixing the evaporation number E enables us to check

the influence of the relative superheat on the two-phase

flow stability characteristics for ethanol, as shown in

Fig. 7. It appears that small A (thin vapor film) corre-

sponds to smaller critical values of Rc, larger critical

Fig. 4. The neutral curves for water for A ¼ 0:2 and 0:016E6

10:0 (106DT 6 104 �C).

Fig. 5. The neutral curves for water for E ¼ 0:1 (DT ¼ 100 �C)
and different thicknesses of the vapor film in two-phase problem

and for one-phase problem (thick curve).Fig. 3. The neutral curves in the one-phase case for (a) air,

(b) water, and (c) ethanol.
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wave numbers and wider instability zone (A ¼ 0:2 :
Rc ¼ 13:04, ac ¼ 0:255, A ¼ 0:5 : Rc ¼ 16:55, ac ¼
0:203, A ¼ 0:8 : Rc ¼ 18:29, ac ¼ 0:122). Notice in Fig. 7
that the one-phase Rc and ac are approached as A ! 0.

7.5. Approximate neutral curves for the two-phase prob-

lem for water (with non-zero surface tension)

In the above analysis the surface tension parameter S

was taken to be zero, consistent with the self-similar

basic state examined. One would like to estimate the

effect of reasonably small surface tension on the neutral

curves. To this end, consider a model system in which

S ¼ 0 in the basic state, but S > 0 in the disturbance
equations.

The results of calculations show that as S increases

from zero, the flow becomes more stable, especially for

large wave numbers. Fig. 8 shows such neutral curves

for A ¼ 0:2, E ¼ 0:1 and for S ¼ 0 and S ¼ 106. As
S ! 1, the basic state in this model becomes uncondi-
tionally stable; all infinitesimal perturbations decay, as

can be shown analytically (of course, S ! 1 is the least

likely limit that this model has physical significance).

Thus, for reasonable values of parameters the critical

wave numbers are small enough, so that the influence of

surface tension is small, indicating that the instabilities

that emerge are driven by the bulk fields, and not by the

interface.

7.6. Discussion

Fig. 2 shows that the temperature and velocity pro-

files for the two-phase problem are markedly similar to

those of the one-phase case, suggesting that the neutral

curves in the two cases may be similar as well. This is

borne out in the comparisons between Figs. 3 and 5.

Here in Fig. 3(a) for air there is a two-lobe structure

reminiscent of that in Fig. 5 for A ¼ 0:2, for example.
Fig. 3(b) for water has only a single lobe similar to that

of in Fig. 5 for A ¼ 0:5. It is clearly seen that the critical
point of the neutral curve for two-phase problem ap-

proaches similar point for one-phase case when A (and

the thickness of the vapor film) decreases reaching zero.

The evaporation number E has little influence on the

neutral curves in typical operating ranges. However, the

superheat A, which controls the thickness of the vapor

film, affects the stability conditions significantly. Fig. 7

shows that in the range A 2 ½0:2; 0:8
, Rc 2 ½13
 and
ac 2 ½0:10; 0:25
.
In all cases the self-similar basic state suggests that

the instability parameters depend on x0d, the distance
from the leading edge. Here,

R ¼ galDTx30d
m2l

� �1=4
; a ¼ m2l x0d

galDT

� �1=4
ad;

where ad is the dimensional wave number.
For the chosen sample materials we therefore may

predict the dimensional critical distance ðx0dÞc from the
leading edge for various superheat values:

Fig. 6. The neutral curves for ethanol for A ¼ 0:8 and

0:016E6 1:0 (186DT 6 1830 �C).

Fig. 7. The neutral curves for ethanol for E ¼ 0:1 (DT ¼ 183
�C) and different thicknesses of the vapor film in two-phase

problem and for one-phase problem (thick curve).

Fig. 8. The neutral curves for water for A ¼ 0:2, E ¼ 0:1 and
with changing dimensionless surface tension S (S ¼ 0 : Rc ¼
20:05, ac ¼ 0:145, S ¼ 106 : Rc ¼ 21:7, ac ¼ 0:134).
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Below this critical point all perturbations decrease,

and beyond it they start to grow in space. As the result

the typical instantaneous snapshot of the vapor–liquid

interface at neutral stability will have a form shown in

Fig. 9.

We chose the method of spatial stability analysis in

which the perturbation has a fixed time frequency and

we followed its spatial-growth rate along the wall in the

direction of the flow. The main assumption usually

made in such computations is the quasi-parallel ap-

proximation when all x derivatives (along the wall) of

the basic-flow quantities are set to be zero. This as-

sumption corresponds to local rather than global sta-

bility characteristics. Some authors (see, for example,

[11]) suggest a method of ‘‘globalization’’ or averaging

of the local characteristics. The idea is to integrate the

locally determined spatial-growth rate starting from the

point of instability onset to some arbitrary position

along the wall. We have calculated the averaged neutral

curve for A ¼ 0:2, E ¼ 0:1, and the comparison shows
(see Fig. 10) that while the local curve represents two

instabilities, the averaged curve shows only one insta-

bility, and it has a narrower instability range in wave

numbers (or time frequencies).

The linear stability analysis of two-phase (and even

one-phase) problems is a challenge from computational

point of view. It was noted already in [7] that the cal-

culations for larger values of wave numbers (or time

frequencies) demonstrated rapid deterioration in accu-

racy which cannot be cured by known approaches. We

were able to improve some results for one-phase models

(see Fig. 3), but we found the same type of numerical

instabilities in the two-phase problem.

In scaling the equations, velocity scale (29) was

chosen meaning that Reynolds number equals to the

Grashof number. Instead, one could choose other sca-

lings corresponding to a general relation Gr ¼ Re2�b. In

the case the basic flow is still self-similar, and in terms of

scaled variables its stability criteria remain unchanged

for b < 3=2, i.e. as long as mass flux J neglected in (45).
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